mypo.optimizer package¶
Submodules¶
mypo.optimizer.base_optimizer module¶
Optimizer for weights of portfolio.
-
class
mypo.optimizer.base_optimizer.
BaseOptimizer
(weights: Optional[Union[int, float, complex, str, bytes, numpy.generic, Sequence[Union[int, float, complex, str, bytes, numpy.generic]], Sequence[Sequence[Any]], numpy.typing._array_like._SupportsArray]], do_re_optimize: bool = False)¶ Bases:
object
Base Optimizer.
-
do_re_optimize
() → bool¶ Do re optimize?
- Returns
whether re optimize.
-
get_weights
() → numpy.ndarray¶ Get weights.
- Returns
Weights.
-
optimize
(market: mypo.market.Market, at: datetime.datetime) → numpy.float64¶ Optimize weights.
- Parameters
market – Market data.
at – Current date.
-
mypo.optimizer.minimum_variance_optimizer module¶
Optimizer for weights of portfolio.
-
class
mypo.optimizer.minimum_variance_optimizer.
MinimumVarianceOptimizer
(span: int = 260, with_semi_covariance: bool = False, minimum_return: Optional[float] = None, do_re_optimize: bool = False)¶ Bases:
mypo.optimizer.base_optimizer.BaseOptimizer
Minimum variance optimizer.
-
optimize
(market: mypo.market.Market, at: datetime.datetime) → numpy.float64¶ Optimize weights.
- Parameters
market – Past market stock prices.
at – Current date.
- Returns
Optimized weights
-
mypo.optimizer.no_optimizer module¶
Optimizer for weights of portfolio.
-
class
mypo.optimizer.no_optimizer.
NoOptimizer
(weights: Optional[Union[int, float, complex, str, bytes, numpy.generic, Sequence[Union[int, float, complex, str, bytes, numpy.generic]], Sequence[Sequence[Any]], numpy.typing._array_like._SupportsArray]] = None, do_re_optimize: bool = False)¶ Bases:
mypo.optimizer.base_optimizer.BaseOptimizer
Base Optimizer.
-
optimize
(market: mypo.market.Market, at: datetime.datetime) → numpy.float64¶ Optimize weights.
- Parameters
market – Market data.
at – Current date.
-