mypo.optimizer package¶
Submodules¶
mypo.optimizer.base_optimizer module¶
Optimizer for weights of portfolio.
-
class
mypo.optimizer.base_optimizer.BaseOptimizer(weights: Optional[Union[int, float, complex, str, bytes, numpy.generic, Sequence[Union[int, float, complex, str, bytes, numpy.generic]], Sequence[Sequence[Any]], numpy.typing._array_like._SupportsArray]], do_re_optimize: bool = False)¶ Bases:
objectBase Optimizer.
-
do_re_optimize() → bool¶ Do re optimize?
- Returns
whether re optimize.
-
get_weights() → numpy.ndarray¶ Get weights.
- Returns
Weights.
-
optimize(market: mypo.market.Market, at: datetime.datetime) → numpy.float64¶ Optimize weights.
- Parameters
market – Market data.
at – Current date.
-
mypo.optimizer.minimum_variance_optimizer module¶
Optimizer for weights of portfolio.
-
class
mypo.optimizer.minimum_variance_optimizer.MinimumVarianceOptimizer(span: int = 260, with_semi_covariance: bool = False, minimum_return: Optional[float] = None, do_re_optimize: bool = False)¶ Bases:
mypo.optimizer.base_optimizer.BaseOptimizerMinimum variance optimizer.
-
optimize(market: mypo.market.Market, at: datetime.datetime) → numpy.float64¶ Optimize weights.
- Parameters
market – Past market stock prices.
at – Current date.
- Returns
Optimized weights
-
mypo.optimizer.no_optimizer module¶
Optimizer for weights of portfolio.
-
class
mypo.optimizer.no_optimizer.NoOptimizer(weights: Optional[Union[int, float, complex, str, bytes, numpy.generic, Sequence[Union[int, float, complex, str, bytes, numpy.generic]], Sequence[Sequence[Any]], numpy.typing._array_like._SupportsArray]] = None, do_re_optimize: bool = False)¶ Bases:
mypo.optimizer.base_optimizer.BaseOptimizerBase Optimizer.
-
optimize(market: mypo.market.Market, at: datetime.datetime) → numpy.float64¶ Optimize weights.
- Parameters
market – Market data.
at – Current date.
-